RPE189Mu01 100 $\mu \mathrm{g}$

Recombinant Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9)
Organism Species: Mus musculus (Mouse)
Instruction manual
FOR IN VITRO USE AND RESEARCH USE ONLY
NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

10th Edition (Revised in Jan, 2014)

[PROPERTIES]

Residues: Ser156~Gln694
Tags: Two N-terminal Tags, His-tag and GST-tag
Accession: Q80W65
Host: E. coli
Subcellular Location: Cytoplasm. Secreted.
Endosome. Lysosome. Cell surface.
Purity: >90\%
 pH7.4, containing 5\% trehalose, 0.01% sarcosyl.

Predicted isoelectric point: 7.5
Predicted Molecular Mass: 87.3kDa
Applications: SDS-PAGE; WB; ELISA; IP.
(May be suitable for use in other assays to be determined by the end user.)

[USAGE]

Reconstitute in sterile PBS, pH7.2-pH7.4.

[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at $2-8^{\circ} \mathrm{C}$ for one month.
Aliquot and store at $-80^{\circ} \mathrm{C}$ for 12 months.
Stability Test: The thermal stability is described by the loss rate of the target protein. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at $37^{\circ} \mathrm{C}$ for 48 h , and no obvious degradation and precipitation were observed. (Referring from China Biological Products Standard, which was calculated by the Arrhenius equation.) The loss of this protein is less than 5% within the expiration date under appropriate storage condition.

[SEQUENCES]

The sequence of the target protein is listed below. SIPWN LERIIPAWHQ TEEDRSPDGS SQVEVYLLDT SIQGAHREIE GRVTITDFNS VPEEDGTRFH RQASKCDSHG THLAGVVSGR DAGVAKGTSL HSLRVLNCQG KGTVSGTLIG LEFIRKSQLI QPSGPLVVLL PLAGGYSRIL NAACRHLART GVVLVAAAGN FRDDACLYSP ASAPEVITVG ATNAQDQPVT LGTLGTNFGR CVDLFAPGKD IIGASSDCST CFMSQSGTSQ AAAHVAGIVA RMLSREPTLT LAELRQRLIH FSTKDVINMA WFPEDQQVLT PNLVATLPPS THETGGQLLC RTVWSAHSGP TRTATATARC APEEELLSCS SFSRSGRRRG DWIEAIGGQQ VCKALNAFGG EGVYAVARCC LVPRANCSIH NTPAARAGLE THVHCHQKDH VLTGCSFHWE VEDLSVRRQP ALRSRRQPGQ CVGHQAASVY ASCCHAPGLE CKIKEHGISG PSEQVTVACE AGWTLTGCNV LPGASLTLGA YSVDNLCVAR VHDTARADRT SGEATVAAAI CCRSRPSAKA SWVQ

