

RPB586Hu02 50µg
Recombinant Integrin Beta 2 (ITGb2)
Organism Species: Homo sapiens (Human)
Instruction manual

FOR IN VITRO USE AND RESEARCH USE ONLY NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

9th Edition (Revised in Jul, 2013)

[PROPERTIES]

Residues: Asp451~Ser627 (Accession # P05107), with two N-terminal Tags, His-tag and MBP-tag.

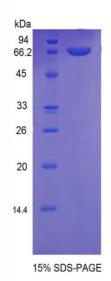
Host: E. coli

Subcellular Location: Membrane; Single-pass

type I membrane protein.

Purity: >95%

Endotoxin Level: <1.0EU per 1µg (determined by the LAL method).


Formulation: Supplied as lyophilized form in PBS, pH7.4, containing 5% sucrose, 0.01% sarcosyl.

Predicted isoelectric point: 5.8

Predicted Molecular Mass: 65.8kDa

Applications: SDS-PAGE; WB; ELISA; IP.

(May be suitable for use in other assays to be determined by the end user.)

[<u>USAGE</u>]

Reconstitute in sterile PBS, pH7.2-pH7.4.

[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at 2-8°C for one month.

Aliquot and store at -80°C for 12 months.

Stability Test: The thermal stability is described by the loss rate of the target protein. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at 37°C for 48h, and no obvious degradation and precipitation were observed. (Referring from China Biological Products Standard, which was calculated by the Arrhenius equation.) The loss of this protein is less than 5% within the expiration date under appropriate storage condition.

[SEQUENCES]

The target protein is fused with two N-terminal Tags, His-tag and MBP-tag, its sequence is listed below.

MKIEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ VAATGDGPDI IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY NGKLIAYPIA VEALSLIYNK DLLPNPPKTW EEIPALDKEL KAKGKSALMF NLQEPYFTWP LIAADGGYAF KYENGKYDIK DVGVDNAGAK AGLTFLVDLI KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK VNYGVTVLPT FKGQPSKPFV GVLSAGINAA SPNKELAKEF LENYLLTDEG LEAVNKDKPL GAVALKSYEE ELAKDPRIAA TMENAQKGEI MPNIPQMSAF WYAVRTAVIN AASGRQTVDE ALKDAQTGST SGSGHHHHHH SAGLVPRGST AIGMKETAAA KFERQHMDSP DLGTLEVLFQ GPLGSEF- DQSRDRSLCH GKGFLECGIC RCDTGYIGKN CECQTQGRSS QELEGSCRKD NNSIICSGLG DCVCGQCLCH TSDVPGKLIY GQYCECDTIN CERYNGQVCG GPGRGLCFCG KCRCHPGFEG SACQCERTTE GCLNPRRVEC SGRGRCRCNV CECHSGYQLP LCQECPGCPS PCGKYIS

[REFERENCES]

- 1. Weitzman J.B., et al. (1991) FEBS Lett. 294:97-103.
- 2. Nelson C., et al. (1992) J. Biol. Chem. 267:3351-3357.
- 3. Fagerholm S., et al. (2002) J. Biol. Chem. 277:1728-1738.
- 4. Arnaout M.A., et al. (1990) J. Clin. Invest. 85:977-981.