RPA875Mu01 50 $\mu \mathrm{g}$
Recombinant Carbonic Anhydrase I (CA1)
Organism Species: Mus musculus (Mouse)
Instruction manual

FOR IN VITRO USE AND RESEARCH USE ONLY NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

9th Edition (Revised in Jul, 2013)

[PROPERTIES]

Residues: Asp15~Gln223 (Accession \# P13634), with N -terminal His-Tag.

Host: E. coli
Subcellular Location: Cytoplasm.
Purity: >95\%
Endotoxin Level: <1.0EU per $1 \mu \mathrm{~g}$
(determined by the LAL method).
Formulation: Supplied as lyophilized form in PBS,
pH 7.4 , containing 5% sucrose, 0.05% sarcosyl.
Predicted isoelectric point: 6.5

Predicted Molecular Mass: 24.1 kDa
Applications: SDS-PAGE; WB; ELISA; IP.
(May be suitable for use in other assays to be determined by the end user.)

[USAGE]

Reconstitute in sterile PBS, pH7.2-pH7.4.

[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at $2-8^{\circ} \mathrm{C}$ for one month.
Aliquot and store at $-80^{\circ} \mathrm{C}$ for 12 months.
Stability Test: The thermal stability is described by the loss rate of the target protein. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at $37^{\circ} \mathrm{C}$ for 48 h , and no obvious degradation and precipitation were observed. (Referring from China Biological Products Standard, which was calculated by the Arrhenius equation.) The loss of this protein is less than 5% within the expiration date under appropriate storage condition.

[SEQUENCES]

The target protein is fused with N -terminal His-Tag, its sequence is listed below. MGHHHHHHSGS-DQWSKL YPIANGNNQS PIDIKTSEAN HDSSLKPLSI SYNPATAKEI VNVGHSFHVI FDDSSNQSVL KGGPLADSYR LTQFHFHWGN SNDHGSEHTV DGTRYSGELH LVHWNSAKYS SASEAISKAD GLAILGVLMK VGPANPSLQK VLDALNSVKT KGKRAPFTNF DPSSLLPSSL DYWTYFGSLT HPPLHESVTW VICKDSISLS PEQ

[REFERENCES]

1. Fraser P.J., Curtis P.J. (1986) J. Mol. Evol. 23:294-299.
2. Song S.H., et al. (2012) Biochim. Biophys. Acta 1819:885-891.
3. Zheng Y., et al. (2012) BMC Musculoskelet Disord 13:256-256.
4. Sowden J., et al. (1992) Biochem. J. 288:545-551.
