

APA875Mu01 100μg

Active Carbonic Anhydrase I (CA1)

Organism Species: Homo sapiens (Human)

Instruction manual

FOR RESEARCH USE ONLY
NOT FOR USE IN CLINICAL DIAGNOSTIC PROCEDURES

13th Edition (Revised in Aug, 2023)

[PROPERTIES]

Source: Prokaryotic expression.

Host: E. coli

Residues: Asp15~Gln223
Tags: N-terminal His-tag

Purity: >95%

Endotoxin Level: <1.0EU per 1μg (determined by the LAL method). **Buffer Formulation:** PBS, pH7.4, containing 0.01% SKL, 5%Trehalose .

Original Concentration: 200µg/mL

Applications: Cell culture; Activity Assays.

(May be suitable for use in other assays to be determined by the end user.)

Predicted isoelectric point: 6.5

Predicted Molecular Mass: 24.1kDa

Accurate Molecular Mass: 24kDa as determined by SDS-PAGE reducing conditions.

[USAGE]

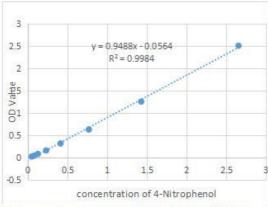
Reconstitute in 10mM PBS (pH7.4) to a concentration of 0.1-1.0 mg/mL. Do not vortex.

[STORAGE AND STABILITY]

Storage: Avoid repeated freeze/thaw cycles.

Store at 2-8°C for one month.

Aliquot and store at -80°C for 12 months.


Stability Test: The thermal stability is described by the loss rate. The loss rate was determined by accelerated thermal degradation test, that is, incubate the protein at 37°C for 48h, and no obvious degradation and precipitation were observed. The loss rate is less than 5% within the expiration date under appropriate storage condition.

[SEQUENCE]

DQWSKL YPIANGNNQS PIDIKTSEAN HDSSLKPLSI SYNPATAKEI VNVGHSFHVI FDDSSNQSVL KGGPLADSYR LTQFHFHWGN SNDHGSEHTV DGTRYSGELH LVHWNSAKYS SASEAISKAD GLAILGVLMK VGPANPSLQK VLDALNSVKT KGKRAPFTNF DPSSLLPSSL DYWTYFGSLT HPPLHESVTW VICKDSISLS PEQ

[ACTIVITY]

Carbonic Anhydrase (CA) catalyzes the reversible reaction of CO2 + H2O = HCO3- + H+, which is fundamental to many processes such as respiration, renal tubular acidification and bone resorption. CA1 is a cytosolic enzyme with the highest levels in erythrocytes and is a very early marker for erythroid differentiation. The activity of recombinant mouse CA1 was measured by its ability to hydrolyze 4-Nitrophenyl acetate (4-NPA) to 4-Nitrophenol. The reaction was performed in 12.5 mM Tris, 75 mM NaCl, pH 7.5 (assay buffer), initiated by addition 50 $\,\mu$ L of various concentrations of CA1 (diluted by assay buffer) to 50 μ L of 2 mM substrate 4-NPA (100 mM stock in Acetone, diluted by assay buffer). Incubated at 37 $^{\circ}$ C for 5min, then read at a wavelength of 400 nm.

4-Nitrophenol (product)mM	OD400nm
0.01953125	0.045
0.0390625	0.076
0.078125	0.123
0.15625	0.227
0.3125	0.409
0.625	0.766
1.25	1.426
2.5	2.653

Figure 1. The standard curve of 4-Nitrophenol

One unit of enzyme activity is defined as the 1 µg of enzyme required to convert 1 pmol of 4-Nitrophenyl acetate to 4-Nitrophenol in 1min at 37°C. The specific activity of recombinant mouse CA1 is > 3 pmol/min/µg.

Specific Activity (pmol/min/
$$\mu$$
g)= $\frac{\Delta OD * F}{T * N}$

△OD=Adjusted for Substrate Blank

F=Conversion Factor (convert from standard curve of 4-Nitrophenol)

T= Time

N=Amount of enzyme

[IDENTIFICATION]

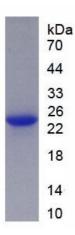


Figure 2. SDS-PAGE

Sample: Active recombinant CA1, Mouse

[IMPORTANT NOTE]

The kit is designed for research use only, we will not be responsible for any issue if the kit was used in clinical diagnostic or any other procedures.